Dehn Fillings of Knot Manifolds Containing Essential Once-punctured Tori

نویسندگان

  • STEVEN BOYER
  • XINGRU ZHANG
چکیده

In this paper we study exceptional Dehn fillings on hyperbolic knot manifolds which contain an essential once-punctured torus. Let M be such a knot manifold and let β be the boundary slope of such an essential once-punctured torus. We prove that if Dehn filling M with slope α produces a Seifert fibred manifold, then ∆(α, β) ≤ 5. Furthermore we classify the triples (M ;α, β) when ∆(α, β) ≥ 4. More precisely, when ∆(α, β) = 5, then M is the (unique) manifold Wh(−3/2) obtained by Dehn filling one boundary component of the Whitehead link exterior with slope −3/2, and (α, β) is the pair of slopes (−5, 0). Further, ∆(α, β) = 4 if and only if (M ;α, β) is the triple (Wh( −2n± 1 n );−4, 0) for some integer n with |n| > 1. Combining this with known results, we classify all hyperbolic knot manifolds M and pairs of slopes (β, γ) on ∂M where β is the boundary slope of an essential once-punctured torus in M and γ is an exceptional filling slope of distance 4 or more from β. Refined results in the special case of hyperbolic genus one knot exteriors in S are also given.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cusp Areas of Farey Manifolds and Applications to Knot Theory

This paper gives the first explicit, two-sided estimates on the cusp area of once-punctured-torus bundles, 4-punctured sphere bundles, and two-bridge link complements. The input for these estimates is purely combinatorial data coming from the Farey tessellation of the hyperbolic plane. The bounds on cusp area lead to explicit bounds on the volume of Dehn fillings of these manifolds, for example...

متن کامل

A ug 1 99 7 NONHYPERBOLIC DEHN FILLINGS ON HYPERBOLIC 3 - MANIFOLDS Mario

In this paper we will give three infinite families of examples of nonhyperbolic Dehn fillings on hyperbolic manifolds. A manifold in the first family admits two Dehn fillings of distance two apart, one of which is toroidal and annular, and the other is reducible and ∂-reducible. A manifold in the second family has boundary consisting of two tori, and admits two reducible Dehn fillings. A manifo...

متن کامل

Toroidal Dehn fillings on hyperbolic 3-manifolds

We determine all hyperbolic 3-manifolds M admitting two toroidal Dehn fillings at distance 4 or 5. We show that if M is a hyperbolic 3manifold with a torus boundary component T0, and r, s are two slopes on T0 with ∆(r, s) = 4 or 5 such that M(r) and M(s) both contain an essential torus, then M is either one of 14 specific manifolds Mi, or obtained from M1, M2, M3 or M14 by attaching a solid tor...

متن کامل

Non-integral Toroidal Dehn Surgeries

If we perform a non-trivial Dehn surgery on a hyperbolic knot in the 3-sphere, the result is usually a hyperbolic 3-manifold. However, there are exceptions: there are hyperbolic knots with surgeries that give lens spaces [1], small Seifert fiber spaces [2], [5], [7], [20], and toroidal manifolds, that is, manifolds containing (embedded) incompressible tori [6], [7]. In particular, Eudave-Muñoz ...

متن کامل

Small surfaces and Dehn filling

We give a summary of known results on the maximal distances between Dehn fillings on a hyperbolic 3–manifold that yield 3–manifolds containing a surface of non-negative Euler characteristic that is either essential or Heegaard. AMS Classification 57M25; 57M50

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011